Continue Linear Sequences 7, 11, 15, 19... How do I know this is a linear sequence? It increases by adding 4 to each term. How many terms do I need to make this conclusion? Ot least 4 terms — two terms only shows one difference not if this difference is constant. (a common difference). How do I continue the sequence? You continue to repeat the same difference through the next positions in the sequence #### Predict and check terms CHECK — draw the next terms #### Predictions: Look at your pattem and consider how it will increase. eg How many lines in pattern 62 Prediction - 13 If it is increasing by 2 each time - in 3 more patterns there will be 6 more lines Sequences from algebraic rules This is substitution This will be linear - note the single power of n. The values increase at a constant rate 2n - 5 → Substitute the number of the term you are looking for in place of 'n' This is not linear as there is a power for n 100^{th} term = 2 (1) - 5 = -3 2^{nd} term = 2 (2) - 5 = -1 100^{th} term = 2 (100) - 5 = 195 Checking for a term in a sequence Form an equation Is 201 in the sequence 3n - 4? 3n - 4 = 201 Term to check Solving this will find the position of the term in the sequence. ONLY an integer solution can be in the sequence. Complex algebraic rules 2 tijmes whatever n squared is eg |st term = 2 x |<mark>2 =</mark> 2 2^{st} term = 2 x 2^2 = 8 100th term = 2 x 100² = 2000 eg. |st term = (2 x 1)² = 4 2 times n then square the answer 2^{st} term = $(2 \times 2)^2 = 16$ 100^{th} term = $(2 \times 100)^2$ = 40000 Misconceptions and comparisons n (n + 5) ← 1 st term = 1(1+5) = 62 st term = 2(2+5) = 14 2^{st} term = 2(2 + 5) = 14 100^{th} term = 100(100 + 5) = 10500 You don't need to expand the expression ### Explain term-to-term rule How you get from term to term Try to explain this in full sentences not just with mathematical notation. Use key maths language — doubles, halves, multiply by two, add four to the previous term etc. To explain a whole sequence you need to include a term to begin at... The next term is found by tripling the previous term. The sequence begins at 4. The next term is 4, 12, 36, 108... Triplication is 4, 12, 36, 108... First term ## Sequence in a table and graphically Because the terms increase by the same addition each time this is **inear** — as seen in the araph # Describe and continue a sequence diagrammatically Count the number of circles or lines in each image Position This is the 4 ____ 4, 8, 12, 16, 20.... 4n ↓ ↓ ↓ 7, 11, 15, 19, 22 This has the same constant difference — but is 3 more than the original sequence 4n + 3 This is the constant difference between the terms in the sequence ### Quadratic Nth term Find the nth term of the following quadratic sequence: Onswer: $3n^2-1$ # Steps for success - Find the first difference - 2. Find the second difference - 3. Half the second difference and put it in front of n² - 4. Find the sequence of this - 5. Subtract the new sequence from the original sequence - 6. Find the nth term of the new sequence - 7. Put all the components together Find the nth term of the following quadratic sequence: Onswer: $3n^2-2n+4$