Maths at Southmoor Academy

A - Number and the Number System - Stage 7

Integer Place Value

Billions			Millions			Thousands			Ones		
Н	Т	0	Н	Т	0	Н	Т	0	Н	Т	0
		3	1	4	8	0	3	3	0	2	9
Placeholder											

Three billion, one hundred and forty eight million, thirty three thousand and twenty nine **I billion** 1, 000, 000, 000

Decimal Place Value

Three thousand and twenty five point six zero four

Prime numbers

- Integer
- Only has 2 factors
- I and itself
 The first prime number
 The only even prime number

Learn or how-to quick recall...

2, 3, 5, 7, 11, 13, 17, 19, 23, 29...

! Power laws of indices

$$(5^3)^2 = (5 \times 5 \times 5)^2$$

= (5 \times 5 \times 5) \times (5 \times 5 \times 5)

Power laws for indices

$$(a^m)^n = a^{m \times n}$$

Square and triangular numbers

Representations are useful to understand a square number n²

1, 4, 9, 16, 25, 36, 49, 64 ...

Triangular numbers

I million 1.000,000

Representations are useful — an extra counter is added to each new row

Odd two consecutive triangular numbers and get a square number

1, 3, 6, 10, 15, 21, 28, 36, 45...

Cube numbers

$$|3 = |\chi| |\chi| = |$$

$$4^3 = 4 \times 4 \times 4 = 64$$

$$5^3 = 5 \times 5 \times 5 = 125$$

$$163 = 6 \times 6 \times 6 = 216$$

 $3 \times 3 \times 3 = 3^3$

| <u>Oddition/Subtraction laws for indices</u>

The base number is all the same so the terms

can be simplified

Oddition law for indices

$$a^m x a^n = a^{m+n}$$

Subtraction law for indices

$$a^m \div a^n = a^{m-n}$$

Maths at Southmoor Academy

A - Number and the Number System - Stage 7

