Stage 9 2022-23

	Autumn Term		Spring Term		Summer Term	
	1	2	1	2	1	2
$\begin{aligned} & \text { Key } \\ & \text { Concepts } \end{aligned}$	1A Numbers \& the number system. 1B Calculating 2C Exploring \& Calculating FDP	2D Solving equations \& Inequalities 1 2E Manipulating algebra 2F Solving equations \& Inequalities 2 3G Probability	3H Sequences 31 Calculating Space 4J StatisticsAverages	4K statisticsGraphs 4L Algebraic graphs 5M Transformatio ns	5N Investigating properties of shape 50 Proportional reasoning 1	6P Proportional reasoning 2 6Q Visualising \& Constructing
 Understandi ng (National Curriculum)	1A - Interpret a number written in standard form 83 71-73 - Add (subtract) numbers written in standard form 83 71-73 - Multiply (divide) numbers written in standard form	2D - Understand the concept of solving simultaneous equations by substitution 162 106-108 - Decide whether to use elimination or substitution to solve a pair of simultaneous equations 162 106-108	3H - Recognise Fibonacci numbers 104 - Recognise the Fibonacci sequence 104 - Generate Fibonacci type sequences 104 - Find the next three terms in any Fibonacci type sequence	4K - Construct graphs of time series 153 355-357 - Interpret graphs of time series 153 355-357 - Construct and interpret compound bar charts $15 \underline{343}$ - Interpret a wider range of nonstandard graphs	5N - Appreciate that the ratio of corresponding sides in similar triangles is constant 258-261 - Label the sides of a right-angled triangle using a given angle 168 $\underline{258}$ - Choose an appropriate	6P - Understand why speed, density and pressure are known as compound units $142 \underline{233-235}$ - Know the definition of density (pressure, population density, speed) 142 233-235

	between truncating and rounding 31, 32, 9016 - Identify the minimum and maximum values of an amount that has been rounded (to nearest x, x d.p., x s.f.)132, 206 14-16 - Use inequalities to describe the range of values for a rounded value 132,206, 155 14-16 Solve problems involving the maximum and minimum values of an amount that has been rounded 132, 206 14-16 2C - Identify if a	identity $137 \underline{91}$ - Simplify an expression involving ' x ') by collecting like terms $33 \underline{51}$ - Identify when it is necessary to remove factors to factorise a quadratic expression 94 5657 - Identify when it is necessary to find two linear expressions to factorise a quadratic expression 57-59 - Factorise a quadratic expression of the form $x^{2}+b x+c$ 157, 192 57-59 - Know how to set up an mathematical	- Calculate the arc length of a sector when radius is given $118 \underline{258-260}$ foundation book - Know how to find the area of a sector $167 \underline{258-}$ 260 foundation book - Calculate the area of a sector when radius is given 167 258260 foundation book - Calculate the angle of a sector when the arc length and radius are known 167 258260 foundation book - Know how to find the surface area of a right prism (cylinder)	$\mathrm{mx}+\mathrm{c}$ to identify parallel lines 159a 136-137 - Rearrange an equation into the form $y=m x+c$ 159a 136-137 - Interpret the gradient of a straight line graph as a rate of change 216b 162-165 - Plot graphs of quadratic (cubic, reciprocal) functions 98, 161 143-150 - Recognise and interpret the graphs of quadratic (cubic, reciprocal) functions98, 161 143-150 - Sketch graphs of quadratic (cubic, reciprocal) functions 98, 161	- Set up and solve a trigonometric equation to find a missing side in a right-angled triangle 168 258261 - Set up and solve a trigonometric equation when the unknown is in the denominator of a fraction168 258-261 - Set up and solve a trigonometric equation to find a missing angle in a right-angled triangle 168 258261 - Use trigonometry to solve problems involving bearings168 258$\underline{261}$ Use trigonometry to solve problems	a line from a point (at a point) 146a, 146b 246- 250 - Understand the meaning of locus (loci) 165 252- $\underline{253}$ - Know how to construct the locus of points a fixed distance from a point (from a line) 165 252-253 - Choose techniques to construct 2D shapes; e.g. rhombus - Combine techniques to solve more complex loci problems 165 252-253 - Know how to deal with a change in depth

	fraction to a decimal by scaling (when possible) N32 57-59 - Use a calculator to change any fraction to a decimal N44 56-57 - Write a decimal as a percentage N32 77-80 - Write a fraction as a percentage N32 77-80 - Recognise when a fraction (percentage) should be interpreted as a number - Recognise when a fraction	equations 162 106-108 - Interpret the solution to a pair of simultaneous equations 106-108 - Solve a quadratic equation of the form $x^{2}+$ $b x+c$ by factorising 15798 - Solve a quadratic equation of the form $a x^{2}$ $+b x+c$ by factorising 157, $192 \underline{99}$ - Solve a quadratic equation by rearranging and factorising	- Calculate an estimate of the mean from a grouped frequency table, 130b 338-339 - Estimate the range from a grouped frequency table 130a, 130b 338339 - Analyse and compare sets of data $62 \underline{339}$ - Appreciate the limitations of different statistics (mean, median, mode, range) $62 \underline{339}$ - Choose appropriate statistics to describe a set of data $62 \underline{339}$ Justify choice of statistics to	G4b 302-304 - Find and name the equation of the mirror line for a given reflection 302304 - Describe a translation as a 2D vector G5 307-308 - Understand the concept and language of rotations G6 304306 - Carry out a rotation using a given angle, direction and centre of rotation G6 304306 Describe a rotation using mathematical language G6 304306	direct (inverse) proportion situation 199 92$\underline{96}$ - Understand the connection between the multiplier, the expression and the graph - Know the meaning of congruent (similar) shapes 12b, 144 318-321 - Identify congruence (similarity) of shapes in a range of situations 12b, 144 318-321 - Identify the information required to solve a problem involving similar shapes $144 \underline{318-}$ 321	

	(percentage) should be interpreted as a operator - Identify the multiplier for a percentage increase or decrease when the percentage is greater than 100\% R9b 81 - Use calculators to increase an amount by a percentage greater than 100\% R9b 8182 - Solve problems involving percentage change 109 83-84 - Solve original value	157, 19299 - Identify when a quadratic equation cannot be solved by factorising 191 - Make connections between graphs and quadratic equations of the form $a x^{2}$ $+b x+c=0$ 166-169 - Make connections between graphs and quadratic equations of the form $a x^{2}$ $\begin{aligned} & +b x+c=d x \\ & +e \underline{166-169} \end{aligned}$ Find approximate	describe a set of data 62339		Finding missing lengths in similar shapes 144 318-321	

	problems when working with percentages 11085 - Solve financial problems including simple interest 111 86-87 - Understand the meaning of giving an exact solution Solve problems that require exact calculation with fractions	solutions to quadratic equations using a graph 166169 3G - List outcomes of combined events using a tree diagram 151,175 375-376 - Label a tree diagram with probabilities 151,175 375-376 - Label a tree diagram with probabilities when events are dependent 151,175 375-376 - Know when to add two or more probabilities 151,175 371-374 - Know when to multiply two or more probabilities 371-374 - Use a tree				

		diagram to calculate probabilities of independent combined events 151,175 375-376 - Use a tree diagram to calculate probabilities of dependent combined events 151,175 375-379 Understand that relative frequency tends towards theoretical probability as sample size increases 368 369				
Assessment	Teacher/Ass. Test Unit tests	9.1 EXAM Unit tests	Teacher/Ass. Test Unit tests	9.2 EXAM Unit tests	Teacher/Ass. Test Unit tests	9.3 EXAM Unit tests

Curriculum Area: Maths			
Subject:			
Year Group	Basic (Lower Ability End Points)	Clear (Middle Ability End Points)	Detailed (Higher Ability End Points)
7	Pupils use mathematics as an integral part of classroom activities. They represent their work with objects or pictures and discuss it. They recognise and use a simple pattern or relationship.	Pupils develop their own strategies for solving problems and use these strategies both in working within mathematics and in applying mathematics to practical contexts. When solving problems, with or without ICT, they check their results are reasonable by considering the context. They look for patterns and relationships, presenting information and results in a clear and organised way, using ICT appropriately. They search for a solution by trying out ideas of their own.	Pupils carry out substantial tasks and solve quite complex problems by independently and systematically breaking them down into smaller, more manageable tasks. They interpret, discuss and synthesise information presented in a variety of mathematical forms, relating findings to the original context. Their written and spoken language explains and informs their use of diagrams. They begin to give mathematical justifications, making connections between the current situation and situations they have encountered before.
8	Pupils select the mathematics they use in some classroom activities. They discuss their work using mathematical language and are beginning to represent it using symbols and simple diagrams. They explain why an answer is correct.	In order to explore mathematical situations, carry out tasks or tackle problems, pupils identify the mathematical aspects and obtain necessary information. They calculate accurately, using ICT where appropriate. They check their working and results, considering whether these are sensible. They show understanding of situations by describing them mathematically using symbols, words and diagrams. They draw simple conclusions of their own and explain their reasoning.	Starting from problems or contexts that have been presented to them, pupils explore the effects of varying values and look for invariance in models and representations, working with and without ICT. They progressively refine or extend the mathematics used, giving reasons for their choice of mathematical presentation and explaining features they have selected. They justify their generalisations, arguments or solutions, looking for equivalence to different problems with similar structures. They appreciate the difference between mathematical explanation and experimental evidence.

Curriculum Area: Maths			
Subject:			
Year Group	Basic (Lower Ability End Points)	Clear (Middle Ability End Points)	Detailed (Higher Ability End Points)
9	Pupils try different approaches and find ways of overcoming difficulties that arise when they are solving problems. They are beginning to organise their work and check results. Pupils discuss their mathematical work and are beginning to explain their thinking. They use and interpret mathematical symbols and diagrams. Pupils show that they understand a general statement by finding particular examples that match it.	Pupils carry out substantial tasks and solve quite complex problems by independently and systematically breaking them down into smaller, more manageable tasks. They interpret, discuss and synthesise information presented in a variety of mathematical forms, relating findings to the original context. Their written and spoken language explains and informs their use of diagrams. They begin to give mathematical justifications, making connections between the current situation and situations they have encountered before.	Pupils develop and follow alternative approaches. They compare and evaluate representations of a situation, introducing and using a range of mathematical techniques. They reflect on their own lines of enquiry when exploring mathematical tasks. They communicate mathematical or statistical meaning to different audiences through precise and consistent use of symbols that is sustained throughout the work. They examine generalisations or solutions reached in an activity and make further progress in the activity as a result. They comment constructively on the reasoning and logic, the process employed and the results obtained.
10	Pupils develop their own strategies for solving problems and use these strategies both in working within mathematics and in applying mathematics to practical contexts. When solving problems, with or without ICT, they check their results are reasonable by considering the context. They look for patterns and relationships, presenting information and results in a clear and organised way, using ICT appropriately. They search for a solution by trying out ideas of	Starting from problems or contexts that have been presented to them, pupils explore the effects of varying values and look for invariance in models and representations, working with and without ICT. They progressively refine or extend the mathematics used, giving reasons for their choice of mathematical presentation and explaining features they have selected. They justify their generalisations, arguments or solutions, looking for equivalence to different problems with similar structures. They	Pupils critically examine the strategies adopted when investigating within mathematics itself or when using mathematics to analyse tasks. They explain why different strategies were used, considering the elegance and efficiency of alternative lines of enquiry or procedures. They apply the mathematics they know in a wide range of familiar and unfamiliar contexts. They use mathematical language and symbols effectively in presenting a convincing,

Curriculum Area: Maths			
Subject:			
Year Group	Basic (Lower Ability End Points)	Clear (Middle Ability End Points)	Detailed (Higher Ability End Points)
	their own.	appreciate the difference between mathematical explanation and experimental evidence.	reasoned argument. Their reports include mathematical justifications, distinguishing between evidence and proof and explaining their solutions to problems involving a number of features or variables
11	In order to explore mathematical situations, carry out tasks or tackle problems, pupils identify the mathematical aspects and obtain necessary information. They calculate accurately, using ICT where appropriate. They check their working and results, considering whether these are sensible. They show understanding of situations by describing them mathematically using symbols, words and diagrams. They draw simple conclusions of their own and explain their reasoning.	Pupils develop and follow alternative approaches. They compare and evaluate representations of a situation, introducing and using a range of mathematical techniques. They reflect on their own lines of enquiry when exploring mathematical tasks. They communicate mathematical or statistical meaning to different audiences through precise and consistent use of symbols that is sustained throughout the work. They examine generalisations or solutions reached in an activity and make further progress in the activity as a result. They comment constructively on the reasoning and logic, the process employed and the results obtained.	Pupils perform procedures accurately. They interpret, communicate complex information accurately and make deductions and inferences and draw conclusions. Pupils can construct substantial chains of reasoning, including convincing arguments and formal proofs. They generate efficient strategies to solve complex mathematical and nonmathematical problems by translating them into a series of mathematical processes. Pupils make and use connections, which may not be immediately obvious, between different parts of mathematics and interpret results in the context of the given problem. They critically evaluate methods, arguments, results and the assumptions made.

[^0]$\left.\begin{array}{|l|l|}\hline \text { Why this? } & \begin{array}{l}\text { Mathematics is an interconnected subject in which pupils need to be able to move fluently between } \\ \text { Why now? } \\ \text { representations of mathematical ideas. The programme of study for key stage } 3 \text { is organised into } \\ \text { apparently distinct domains, but pupils should build on key stage } 2 \text { and connections across } \\ \text { mathematical ideas to develop fluency, mathematical reasoning and competence in solving } \\ \text { increasingly sophisticated problems. They should also apply their mathematical knowledge in } \\ \text { science, geography, computing and other subjects. The structure is designed to bridge between } \\ \text { KS2 and KS4, building both within and between key topic areas. The structure also builds the } \\ \text { complexity levels within topics and gives a greater variation in the challenge given to pupils. }\end{array} \\ \hline \begin{array}{l}\text { Skills \& } \\ \text { Characteristi } \\ \text { cs }\end{array} & \begin{array}{l}\text { Resilience } \\ \text { Pupils will increase their resilience during the course through learning new concepts, using prior } \\ \text { knowledge to develop mathematical fluency and applying skills to a variety of situations and } \\ \text { problems. Pupils will be challenged in all lessons and will show that they have learned from } \\ \text { mistakes through a variety of tasks including connect exercises. The challenge activities will have } \\ \text { the aim of developing both skills and high aspirations in both this subject and life beyond. } \\ \text { Resilience will also be developed within the Key maths skills below (fluency, reasoning and } \\ \text { problem solving). }\end{array} \\ \begin{array}{l}\text { Collaboration } \\ \text { Pupils will be given the opportunity to work together to develop and share their ideas on topics, } \\ \text { discuss misconceptions and how these topics can be used in real-life situations. }\end{array} \\ \text { Creativity } \\ \text { Pupils will develop creativity through a variety of problem solving activities within each topic, } \\ \text { working on independent tasks beyond the classroom such as Mangahigh activities, and apply the } \\ \text { key skills (fluency, reasoning and problem solving). } \\ \text { Skills Builder } \\ \text { cOMMUNICATION = Listening \& Speaking } \\ \text { Pupils are expected to actively listen so that they can follow instructions and pick out } \\ \text { misconceptions. (LISTENING) }\end{array}\right]$

CREATIVE PROBLEM SOLVING = Problem Solving \& Creativity
Problem solving is an important part of Mathematics and ensures that they develop their mathematical thinking and helps build resilience. (PROBLEM SOLVING)
SELF-MANAGEMENT: Staying Positive \& Aiming High
All pupils attempt Bronze/Silver/Gold tasks and choose their starting point and aim for one or two steps of progress within each lesson. (AIMING HIGH)
COLLABORATION: Leadership \& Teamwork
Pupils are expected to collaborate on many tasks, supporting each other to help all to progress. (TEAMWORK)

Develop fluency

Wconsolidate their numerical and mathematical capability from key stage 2 and extend their understanding of the number system and place value to include decimals, fractions, powers and roots
§select and use appropriate calculation strategies to solve increasingly complex problems
§use algebra to generalise the structure of arithmetic, including to formulate mathematical relationships
§substitute values in expressions, rearrange and simplify expressions, and solve equations
Jmove freely between different numerical, algebraic, graphical and diagrammatic representations [for example, equivalent fractions, fractions and decimals, and equations and graphs]
Wdevelop algebraic and graphical fluency, including understanding linear and simple quadratic functions
Wuse language and properties precisely to analyse numbers, algebraic expressions, 2-Dand 3-D shapes, probability and statistics.

Reason mathematically

Mextend their understanding of the number system; make connections between number relationships, and their algebraic and graphical representations
§extend and formalise their knowledge of ratio and proportion in working with measures and geometry, and in formulating proportional relations algebraically
Fidentify variables and express relations between variables algebraically and graphically
Fmake and test conjectures about patterns and relationships; look for proofs or counter- examples

	Sbegin to reason deductively in geometry, number and algebra, including using geometrical constructions Finterpret when the structure of a numerical problem requires additive, multiplicative or proportional reasoning Fexplore what can and cannot be inferred in statistical and probabilistic settings, and begin to express their arguments formally. Solve problems \&develop their mathematical knowledge, in part through solving problems and evaluating the outcomes, including multi-step problems Fdevelop their use of formal mathematical knowledge to interpret and solve problems, including in financial mathematics Wbegin to model situations mathematically and express the results using a range of formal mathematical representations \&select appropriate concepts, methods and techniques to apply to unfamiliar and non- routine problems.
Aspirations \& Careers	All pupils should be numerate and able to use mathematics at both work and in everyday life beyond school. Mathematics is fundamental to future success and closely linked with financial success. It enhances their ability to infer, problem solve, think logically, spot patterns as well as navigate through their chosen career with a well-equipped vocabulary. Furthermore, mathematics empowers our pupils to operate in the modern world. CDI: 1, 11
	CEIAG AMSP days Careers Fairs Career themed lessons Finance lessons (CDI: 13) Cultural Capital Maths challenges Mangahigh challenges Mathematics in the real world Organising trips, days out and other events

	Extracurricular Stretch and challenge club Chess \& games club Homework club

[^0]: LITERACY
 Pupils will develop their spelling of key mathematical words. This will be monitored using spelling tests at the start and end of each unit. This will be SPAG marked. Pupils will be given opportunities to write in sentences and paragraphs when suited to the topic.

