Stage 8 2022-23						
	Autumn Term		Spring Term		Summer Term	
	1	2	1	2	1	2
Key Concepts	1A Numbers \& the number system. 1B Calculating 2C Exploring \& Calculating FDP	2DManipulatin g Algebra 3E Solving equations \& Inequalities	3F Probability 3G Sequences 4H Algebraic graphs	4I Investigating angles 4J StatisticsAverages 5K StatisticsGraphs	5L Calculating space 5M Proportional reasoning 1	6N Proportional reasoning 2 60 Visualising and Constructing
 Understandi ng (National Curriculum)	1A - Understand the meaning of prime factor N30b 36 - Write a number as a product of its prime factors N30b 36 - Use a Venn diagram to sort information P6 - Use prime factorisations to find the highest common factor	2D - Know the multiplication (division, power, zero) law of indices 131 3032 - Understand that negative powers can arise 154 higher book pg 68 - Substitute positive and negative numbers into	3F - List all elements in a combination of sets using a Venn diagram 127a, 127b 358359 - List outcomes of an event systematically 58 - Use a table to list all outcomes of an event 348-350 - List outcomes of an event using a grid (two-way	41 - Establish the fact that angles in a triangle must total 180° G17170-171 - Use the fact that angles in a triangle total 180° to work out the total of the angles in any polygon G19 180182 - Establish the size of an interior angle in a regular polygon G19 180-	5L - Calculate the radius (diameter) of a circle when the circumference is known 118 - Calculate the radius (diameter) of a circle when the area is known 117 - Calculate the area of composite shapes that include sections of a circle 256-259 - Know the formula for finding the	6N - Understand the meaning of a compound unit 142 201-203 - Know the connection between speed, distance and time 142 201203 - Solve problems involving speed 142 201-203 Identify when it is necessary to convert quantities in order to use a

	- Calculate with positive indices (roots) using written methods N25 32-33 Calculate with negative indices in the context of standard form N45a, N45b 32-33 1B - Know how to square (or cube) a negative number N19b, N25 119-121 - Substitute negative numbers into expressions A10, N19a, N19b 119-121 - Enter negative numbers into a calculator N44 - 119-121 - Interpret a calculator	steps are required A13a, A13b 121-124 - Check the solution to an equation by substitution - Understand the meaning of the four inequality symbols A20a 107 - Choose the correct inequality symbol for a particular situation A20a 107-108 - Represent practical situations as inequalities - Find the set of integers that are solutions to an inequality A20a 108-110 - Use set notation	expected outcomes $59 \underline{\underline{352}}$ Use experimental probability to calculate expected outcomes $125 \underline{352}$ 3G - Generate a sequence from a term-to-term rule A11a 127 - Understand the meaning of a position-to-term rule A11b 130 - Use a position-toterm rule to generate a sequence A11b 130-131 Use the nth term of a sequence to deduce if a given number is in a sequence A11c, 102 132-133 4H - Plot graphs of	range from a grouped frequency table 130a, 130b 323325 - Analyse and compare sets of data 326 - Appreciate the limitations of different statistics (mean, median, mode, range) 62 - Choose appropriate statistics to describe a set of data Justify choice of statistics to describe a set of data 5K - Know the meaning of continuous data $63 \underline{310-311}$ - Interpret a grouped frequency table for continuous data 65a 313-314	217-221 5M - Identify ratio in a real-life context 3864 - Write a ratio to describe a situation 38 66-67 - Identify proportion in a situation 38, 106 162 - Find a relevant multiplier in a situation involving proportion 38, 106161 - Use fractions fluently in situations involving ratio or proportion 38, 106 161-167 - Understand the connections between ratios and fractions 10767-68 - Recognise a graph that illustrates direct proportion 42,199 161-167	51 264-267 - Use the concept of scaling in diagrams G15 209-212 - Measure and state a specified bearing $124 \underline{213-}$ 214 - Construct a scale diagram involving bearings 124 215-216 - Use bearings to solve geometrical problems 124 216 Construct triangles (SSS, SAS, ASA, AAA) 47, 147 232$\underline{235}$

	display when working with negative numbers N44 - Understand how to use the order of operations including powers and roots N20 Use a calculator to evaluate numerical expressions involving powers (roots) N44 2C - Identify if a fraction is terminating or recurring N32 56-59 - Recall some decimal and fraction equivalents (e.g. tenths, fifths, eighths) N32 57-58	to list a set of integers $\underline{358}$ - Use a formal method to solve an inequality with unknowns on both sides A20b - Use a formal method to solve an inequality involving brackets A20b - Know how to deal with negative number terms in an inequality - Know how to show a range of values that solve an inequality on a number line 138 - Know when to use an open or closed circle at the end of a range of values	functions of the form $\mathrm{y}=\mathrm{mx}+\mathrm{c}(\mathrm{x}$ $\pm y=c, a x \pm b y=$ c) $159 a, 159 b$ 138-139 - Understand the concept of the gradient of a straight line 97, 159a, 159b 140141 - Find the gradient of a straight line on a unit grid 159b 140-142 143 - Find the y intercept of a straight line 159a, 159b 143 - Find the equation of a line through one point with a given gradient 159a, 159b143144 - Find the equation of a line through two given points	- Construct a grouped frequency table for continuous data 65a 313-314 - Construct histograms for grouped data with equal class intervals 205 in higher book for unequal - Interpret histograms for grouped data with equal class intervals 205 313-314 Construct and use the horizontal axis of a histogram correctly 205 313314	Recognise a graph that illustrates inverse proportion 42,199 161-167	

	as a percentage N32 77-80 - Recognise when a fraction (percentage) should be interpreted as a number - Recognise when a fraction (percentage) should be interpreted as a operator - Identify the multiplier for a percentage increase or decrease when the percentage is greater than 100\% R9b 81 - Use calculators to increase an amount by a percentage greater than 100\% R9b 81-					

	82 Solve problems involving percentage change 109 $83-$ 84 Solve original value problems when working with percentages 110 85 Solve financial problems including simple interest 111 86-87 Understand the meaning of giving an exact solution Solve problems that require exact calculation with fractions				

Curriculum Area: Maths			
Subject:			
Year Group	Basic (Lower Ability End Points)	Clear (Middle Ability End Points)	Detailed (Higher Ability End Points)
7	Pupils use mathematics as an integral part of classroom activities. They represent their work with objects or pictures and discuss it. They recognise and use a simple pattern or relationship.	Pupils develop their own strategies for solving problems and use these strategies both in working within mathematics and in applying mathematics to practical contexts. When solving problems, with or without ICT, they check their results are reasonable by considering the context. They look for patterns and relationships, presenting information and results in a clear and organised way, using ICT appropriately. They search for a solution by trying out ideas of their own.	Pupils carry out substantial tasks and solve quite complex problems by independently and systematically breaking them down into smaller, more manageable tasks. They interpret, discuss and synthesise information presented in a variety of mathematical forms, relating findings to the original context. Their written and spoken language explains and informs their use of diagrams. They begin to give mathematical justifications, making connections between the current situation and situations they have encountered before.
8	Pupils select the mathematics they use in some classroom activities. They discuss their work using mathematical language and are beginning to represent it using symbols and simple diagrams. They explain why an answer is correct.	In order to explore mathematical situations, carry out tasks or tackle problems, pupils identify the mathematical aspects and obtain necessary information. They calculate accurately, using ICT where appropriate. They check their working and results, considering whether these are sensible. They show understanding of situations by describing them mathematically using symbols, words and diagrams. They draw simple conclusions of their own and explain their reasoning.	Starting from problems or contexts that have been presented to them, pupils explore the effects of varying values and look for invariance in models and representations, working with and without ICT. They progressively refine or extend the mathematics used, giving reasons for their choice of mathematical presentation and explaining features they have selected. They justify their generalisations, arguments or solutions, looking for equivalence to different problems with similar structures. They appreciate the difference between

Curriculum Area: Maths			
Subject:			
Year Group	Basic (Lower Ability End Points)	Clear (Middle Ability End Points)	Detailed (Higher Ability End Points)
			mathematical explanation and experimental evidence.
9	Pupils try different approaches and find ways of overcoming difficulties that arise when they are solving problems. They are beginning to organise their work and check results. Pupils discuss their mathematical work and are beginning to explain their thinking. They use and interpret mathematical symbols and diagrams. Pupils show that they understand a general statement by finding particular examples that match it.	Pupils carry out substantial tasks and solve quite complex problems by independently and systematically breaking them down into smaller, more manageable tasks. They interpret, discuss and synthesise information presented in a variety of mathematical forms, relating findings to the original context. Their written and spoken language explains and informs their use of diagrams. They begin to give mathematical justifications, making connections between the current situation and situations they have encountered before.	Pupils develop and follow alternative approaches. They compare and evaluate representations of a situation, introducing and using a range of mathematical techniques. They reflect on their own lines of enquiry when exploring mathematical tasks. They communicate mathematical or statistical meaning to different audiences through precise and consistent use of symbols that is sustained throughout the work. They examine generalisations or solutions reached in an activity and make further progress in the activity as a result. They comment constructively on the reasoning and logic, the process employed and the results obtained.
10	Pupils develop their own strategies for solving problems and use these strategies both in working within mathematics and in applying mathematics to practical contexts. When solving problems, with or without ICT, they check their results are reasonable by considering the context. They look for patterns and relationships, presenting information and results in a clear and	Starting from problems or contexts that have been presented to them, pupils explore the effects of varying values and look for invariance in models and representations, working with and without ICT. They progressively refine or extend the mathematics used, giving reasons for their choice of mathematical presentation and explaining features they have selected. They justify their generalisations, arguments or	Pupils critically examine the strategies adopted when investigating within mathematics itself or when using mathematics to analyse tasks. They explain why different strategies were used, considering the elegance and efficiency of alternative lines of enquiry or procedures. They apply the mathematics they know in a wide range of familiar and unfamiliar contexts. They use

Curriculum Area: Maths			
Subject:			
Year Group	Basic (Lower Ability End Points)	Clear (Middle Ability End Points)	Detailed (Higher Ability End Points)
	organised way, using ICT appropriately. They search for a solution by trying out ideas of their own.	solutions, looking for equivalence to different problems with similar structures. They appreciate the difference between mathematical explanation and experimental evidence.	mathematical language and symbols effectively in presenting a convincing, reasoned argument. Their reports include mathematical justifications, distinguishing between evidence and proof and explaining their solutions to problems involving a number of features or variables
11	In order to explore mathematical situations, carry out tasks or tackle problems, pupils identify the mathematical aspects and obtain necessary information. They calculate accurately, using ICT where appropriate. They check their working and results, considering whether these are sensible. They show understanding of situations by describing them mathematically using symbols, words and diagrams. They draw simple conclusions of their own and explain their reasoning.	Pupils develop and follow alternative approaches. They compare and evaluate representations of a situation, introducing and using a range of mathematical techniques. They reflect on their own lines of enquiry when exploring mathematical tasks. They communicate mathematical or statistical meaning to different audiences through precise and consistent use of symbols that is sustained throughout the work. They examine generalisations or solutions reached in an activity and make further progress in the activity as a result. They comment constructively on the reasoning and logic, the process employed and the results obtained.	Pupils perform procedures accurately. They interpret, communicate complex information accurately and make deductions and inferences and draw conclusions. Pupils can construct substantial chains of reasoning, including convincing arguments and formal proofs. They generate efficient strategies to solve complex mathematical and nonmathematical problems by translating them into a series of mathematical processes. Pupils make and use connections, which may not be immediately obvious, between different parts of mathematics and interpret results in the context of the given problem. They critically evaluate methods, arguments, results and the assumptions made.

Why this? Why now?

Skills \&

Characteristi
CS

Mathematics is an interconnected subject in which pupils need to be able to move fluently between representations of mathematical ideas. The programme of study for key stage 3 is organised into apparently distinct domains, but pupils should build on key stage 2 and connections across mathematical ideas to develop fluency, mathematical reasoning and competence in solving increasingly sophisticated problems. They should also apply their mathematical knowledge in science, geography, computing and other subjects. The structure is designed to bridge between KS2 and KS4, building both within and between key topic areas. The structure also builds the complexity levels within topics and gives a greater variation in the challenge given to pupils.

Resilience

Pupils will increase their resilience during the course through learning new concepts, using prior knowledge to develop mathematical fluency and applying skills to a variety of situations and problems. Pupils will be challenged in all lessons and will show that they have learned from mistakes through a variety of tasks including connect exercises. The challenge activities will have the aim of developing both skills and high aspirations in both this subject and life beyond. Resilience will also be developed within the Key maths skills below (fluency, reasoning and problem solving).

Collaboration

Pupils will be given the opportunity to work together to develop and share their ideas on topics, discuss misconceptions and how these topics can be used in real-life situations.

Creativity

Pupils will develop creativity through a variety of problem solving activities within each topic, working on independent tasks beyond the classroom such as Mangahigh activities, and apply the key skills (fluency, reasoning and problem solving).

Skills Builder

COMMUNICATION $=$ Listening \& Speaking

Pupils are expected to actively listen so that they can follow instructions and pick out misconceptions. (LISTENING)

CREATIVE PROBLEM SOLVING $=$ Problem Solving \& Creativity

Problem solving is an important part of Mathematics and ensures that they develop their mathematical thinking and helps build resilience. (PROBLEM SOLVING)
SELF-MANAGEMENT: Staying Positive \& Aiming High
All pupils attempt Bronze/Silver/Gold tasks and choose their starting point and aim for one or two steps of progress within each lesson. (AIMING HIGH)
COLLABORATION: Leadership \& Teamwork
Pupils are expected to collaborate on many tasks, supporting each other to help all to progress. (TEAMWORK)

Develop fluency

Fconsolidate their numerical and mathematical capability from key stage 2 and extend their understanding of the number system and place value to include decimals, fractions, powers and roots
Fselect and use appropriate calculation strategies to solve increasingly complex problems
Wuse algebra to generalise the structure of arithmetic, including to formulate mathematical relationships
§substitute values in expressions, rearrange and simplify expressions, and solve equations
§move freely between different numerical, algebraic, graphical and diagrammatic representations [for example, equivalent fractions, fractions and decimals, and equations and graphs]
§develop algebraic and graphical fluency, including understanding linear and simple quadratic functions §use language and properties precisely to analyse numbers, algebraic expressions, 2-Dand 3-D shapes, probability and statistics.

Reason mathematically

§extend their understanding of the number system; make connections between number relationships, and their algebraic and graphical representations
§extend and formalise their knowledge of ratio and proportion in working with measures and geometry, and in formulating proportional relations algebraically

	Fidentify variables and express relations between variables algebraically and graphically Fmake and test conjectures about patterns and relationships; look for proofs or counter- examples Fbegin to reason deductively in geometry, number and algebra, including using geometrical constructions Finterpret when the structure of a numerical problem requires additive, multiplicative or proportional reasoning Mexplore what can and cannot be inferred in statistical and probabilistic settings, and begin to express their arguments formally. Solve problems 乡develop their mathematical knowledge, in part through solving problems and evaluating the outcomes, including multi-step problems Fdevelop their use of formal mathematical knowledge to interpret and solve problems, including in financial mathematics Fbegin to model situations mathematically and express the results using a range of formal mathematical representations Fselect appropriate concepts, methods and techniques to apply to unfamiliar and non- routine problems.
Aspirations \& Careers	All pupils should be numerate and able to use mathematics at both work and in everyday life beyond school. Mathematics is fundamental to future success and closely linked with financial success. It enhances their ability to infer, problem solve, think logically, spot patterns as well as navigate through their chosen career with a well-equipped vocabulary. Furthermore, mathematics empowers our pupils to operate in the modern world. CDI: 1, 11
	CEIAG AMSP days Careers Fairs Career themed lessons Finance lessons (CDI: 13) Cultural Capital Maths challenges

	Mangahigh challenges
Mathematics in the real world	
Organising trips, days out and other events	
Extracurricular	
Stretch and challenge club	
Chess \& games club	
Homework club	

