Stage 6-2022-23						
	Autumn Term		Spring Term		Summer Term	
	1	2	1	2	1	2
Key Concepts	1A Number \& the number system 1B Checking, approximating and estimating 2C Calculating	2D Calculating Division 2E Exploring FDP 2F Calculating FDP	3G Manipulating algebra 3H Solving equations \& Inequalities 31 Probabilities 4J Sequences	4K Investigating properties of shape 4L Proportional reasoning	5M Transformatio ns 5N Statistics averages 50 Statisticsgraphs 6P Measuring space	6Q Calculating space 6R Investigating properties of shape
National Curriculum Knowledge \& Understandi ng	1A - Multiply (divide) numbers with up to three decimal places by 10 , 100, 1000 N17a, N17b 11 - Understand (order, write, read) place value in numbers with up to eight digits N1a, N1b - Understand and use negative numbers when working with temperature 231 - Understand and	2D - Use short division to divide a fourdigit number by a one-digit number N16 6-7 - Use short division to divide a three(or four-) digit number by a two-digit number N16 6-7 - Understand the method of long division N29a 6$\underline{7}$ - Use long	3G - Create a one-step formula from given information A3 116-117 - Create a two-step formula from given information A3 116-117 - Use symbols to represent variables in a formula A3 116117 - Know the meaning of expression, term, formula, equation,	4K - Identify angles that meet at a point G10a 169 - Identify angles that meet at a point on a line G10a 168 - Identify vertically opposite angles G18 172 - Know that vertically opposite angles are equal G18 172 - Use known facts to find missing angles G18, G10a 169169, 172 - Explain reasoning	5M - Construct a 2-D coordinate grid (all four quadrants) A1a, A1b 134-135 - Use coordinates to plot a set of points to construct a polygon A1a, A1b 134-135 - Solve problems involving coordinates A1a, A1b 134-135 - Simple enlargement of a 2D shape (no	6Q - Recognise that shapes with the same areas can have different perimeters and vice versa - Know that the area of a parallelogram is given by the formula area $=$ base \times height G20b 248 - Know that the volume of a cuboid is given by the formula volume $=$ length \times

	use negative numbers when working in other contexts 231 - Know the meaning of a common multiple (factor) of two numbers N31b 34-35 - Identify common multiples (factors) of two numbers N31 a 34-35 - Know how to test if a number up to 120 is prime N30a - Recall prime numbers up to 50 N30a - Place a set of negative numbers in order N2a - Place a set of mixed positive and negative numbers in order N2a - Use inequality symbols to	division to find the remainder at each step of the division N29a 6-7 - Know how to write, and use, the remainder at each step of the division 20 6-7 - Use long division to divide a three(or four-) digit number by a two-digit number N29a 6Z - Write the remainder to a division problem as a remainder 20 6근 - Write the remainder to a division problem as a fraction 20 6-7 - Extend beyond the decimal point to write	function A2 - Know basic algebraic notation (the rules of algebra) A4 - Use letters to represent variables A4 116117 - Identify like terms in an expression A6 89 - Simplify an expression by collecting like terms A6 89-90 - Know how to multiply a (positive) single term over a bracket (the distributive law) A7a 91-93 - Substitute positive numbers into expressions and formulae A10 118-120 3H - Solve missing number	169-169, 172 - Know the angle sum of a triangle G17 170-171 - Know that angles in a triangles total 180° G17 170-171 - Find missing angles in triangles G17 $\underline{170-171}$ - Know the angle sum of a quadrilateral G19 176-180 - Know how to find the angle sum of any polygon G19 180-182 - Use the angle sum of a triangle to find missing angles G17 170-171 - Use the angle sum of a quadrilateral to find missing angles 176-180 - Know how to find the size of one angle in any regular polygon G19 180182 4L	centre of enlargement)G28 294-295 Carry out a reflection in a given vertical or horizontal mirror line. G4a $\underline{283}$ 5N - Understand the meaning of 'average' as a typicality (or location) 320322 - Understand the mean as a measure of typicality (or location) S7 - Interpret the mean as a way of levelling the data S7 320-322 - Calculate the mean of a set of data S7 320-322 - Choose an appropriate approximation when required - Use the mean to	width \times height G21a 270 - Calculate the area of a parallelogram (triangle) (Recognise when it is possible to use a formula for the area of a shape) G20b, G20c - Estimate the volume of cubes and cuboids - Choose appropriate units of volume - Calculate the volume of a cuboid 270 G21a - Recognise when it is possible to use a formula for the volume of a shape 270 - Apply the properties of triangles to solve problems G16 Apply the properties of quadrilaterals to solve problems G14

	7 - Explain why addition or subtraction is needed at any point when solving multistep problems - Solve multi-step problems involving addition, subtraction and/or multiplication N20 3-7 - Understand and apply the fact that addition and subtraction have equal priority N20 15-16 - Understand and apply the fact that multiplication and division have equal priority N20 15-16 - Know that multiplication and division take priority over	42-43 - Identify a common factor of two numbers 79 - Simplify a fraction 26 4344 - Write a fraction in its lowest terms 26 43-44 - Confirm that a fraction is written in its lowest terms 26 43-44 - Compare two fractions by considering diagrams 70 - Compare two fractions by considering equivalent fractions $70 \underline{46}$ - Compare two top-heavy fractions 70 - Understand that a fraction is also a way of representing a division	solving an equation A12 98- $\underline{99}$ - Identify the correct order of undoing the operations in an equation A12 98- 99 - Solve one-step equations when the solution is a whole number (fraction) A12 9899 - Solve two-step equations (including the use of brackets) when the solution is a whole number A12 100-102 - Given a function, establish outputs from given inputs N26 124-125 - Given a function, establish inputs from given outputs N26 124125 - Use a mapping		- Understand that pie charts are used to show proportions $\mathbf{S 9}$ 334-336 - Make statements about proportions shown in a pie charts S9 334-336 - Make statements to compare proportions in pie charts S9 334-336 - Use additional information to make statements about frequencies in pie charts S9334-336 - Use a table of frequencies to work out the angle for a slice in a pie chart $\mathbf{S 9}$ 332-334 - Construct a pie chart by measuring angles S9 332-334 - Interpret and construct frequency tables	meaning of a diagonal of a polygon - Know the properties of the special quadrilaterals (including diagonals) G14 - Construct 3D shapes from given nets G12c - Use 'Polydron' to construct nets for common 3D shapes - Draw accurate nets for common 3D shapes G12c 262-264 - Find all the nets for a cube G12c 262-264 - Use a net to visualise the edges (vertices) that will meet when folded G12c_262-264 - Use squared paper to guide construction of 2D shapes

		common denominator that can be used to order a set of fractions N34 46 - Order fractions where the denominators are not multiples of each other N34 47 - Order a set of numbers including a mixture of fractions, decimals and negative numbers N34, N2a, N2b 8 2F - Add (subtract) fractions with different denominators N36 48-49 - Add (subtract) a mixed number and a fraction, including with		- Assess likeliness and place events on a probability scale P1 342-344 - List all the outcomes for an experiment P2a 348- 350 - Identify equally likely outcomes 344-345 - Work out theoretical probabilities for events with equally likely outcomes 344-345 - Know how to represent a probability - Recognise when it is not possible		three decimal places when converting metric units	

		quantity $\mathbf{N 2 4 b}$ 75-76 - Use noncalculator methods to find a percentage of an amount N24b 75-76 - Use decimal or fraction equivalents to find a percentage of an amount where appropriate N24b 76-77 Solve problems involving the use of percentages to make comparisons N39b $76-77$	A11a 127-128 - Use a term-toterm rule to generate a linear sequence A11a 127-128			
Assessment	Teacher/Ass. Test Assessment 1	$\begin{aligned} & \hline \text { 6.1 EXAM } \\ & \text { Assessment } 2 \end{aligned}$	Teacher/Ass test Assessment 3	6.2 EXAM Assessment 4	Teacher/Ass test Assessment 5	6.3 EXAM Assessment 6

Curriculum Area: Maths			
Subject:			
Year Group	Basic (Lower Ability End Points)	Clear (Middle Ability End Points)	Detailed (Higher Ability End Points)
7	Pupils use mathematics as an integral part of classroom activities. They represent their work with objects or pictures and discuss it. They recognise and use a simple pattern or relationship.	Pupils develop their own strategies for solving problems and use these strategies both in working within mathematics and in applying mathematics to practical contexts. When solving problems, with or without ICT, they check their results are reasonable by considering the context. They look for patterns and relationships, presenting information and results in a clear and organised way, using ICT appropriately. They search for a solution by trying out ideas of their own.	Pupils carry out substantial tasks and solve quite complex problems by independently and systematically breaking them down into smaller, more manageable tasks. They interpret, discuss and synthesise information presented in a variety of mathematical forms, relating findings to the original context. Their written and spoken language explains and informs their use of diagrams. They begin to give mathematical justifications, making connections between the current situation and situations they have encountered before.
8	Pupils select the mathematics they use in some classroom activities. They discuss their work using mathematical language and are beginning to represent it using symbols and simple diagrams. They explain why an answer is correct.	In order to explore mathematical situations, carry out tasks or tackle problems, pupils identify the mathematical aspects and obtain necessary information. They calculate accurately, using ICT where appropriate. They check their working and results, considering whether these are sensible. They show understanding of situations by describing them mathematically using symbols, words and diagrams. They draw simple conclusions of their own and explain their reasoning.	Starting from problems or contexts that have been presented to them, pupils explore the effects of varying values and look for invariance in models and representations, working with and without ICT. They progressively refine or extend the mathematics used, giving reasons for their choice of mathematical presentation and explaining features they have selected. They justify their generalisations, arguments or solutions, looking for equivalence to different problems with similar structures. They appreciate the difference between mathematical explanation and experimental evidence.

Curriculum Area: Maths			
Subject:			
Year Group	Basic (Lower Ability End Points)	Clear (Middle Ability End Points)	Detailed (Higher Ability End Points)
9	Pupils try different approaches and find ways of overcoming difficulties that arise when they are solving problems. They are beginning to organise their work and check results. Pupils discuss their mathematical work and are beginning to explain their thinking. They use and interpret mathematical symbols and diagrams. Pupils show that they understand a general statement by finding particular examples that match it.	Pupils carry out substantial tasks and solve quite complex problems by independently and systematically breaking them down into smaller, more manageable tasks. They interpret, discuss and synthesise information presented in a variety of mathematical forms, relating findings to the original context. Their written and spoken language explains and informs their use of diagrams. They begin to give mathematical justifications, making connections between the current situation and situations they have encountered before.	Pupils develop and follow alternative approaches. They compare and evaluate representations of a situation, introducing and using a range of mathematical techniques. They reflect on their own lines of enquiry when exploring mathematical tasks. They communicate mathematical or statistical meaning to different audiences through precise and consistent use of symbols that is sustained throughout the work. They examine generalisations or solutions reached in an activity and make further progress in the activity as a result. They comment constructively on the reasoning and logic, the process employed and the results obtained.
10	Pupils develop their own strategies for solving problems and use these strategies both in working within mathematics and in applying mathematics to practical contexts. When solving problems, with or without ICT, they check their results are reasonable by considering the context. They look for patterns and relationships, presenting information and results in a clear and organised way, using ICT appropriately. They search for a solution by trying out ideas of	Starting from problems or contexts that have been presented to them, pupils explore the effects of varying values and look for invariance in models and representations, working with and without ICT. They progressively refine or extend the mathematics used, giving reasons for their choice of mathematical presentation and explaining features they have selected. They justify their generalisations, arguments or solutions, looking for equivalence to different problems with similar structures. They	Pupils critically examine the strategies adopted when investigating within mathematics itself or when using mathematics to analyse tasks. They explain why different strategies were used, considering the elegance and efficiency of alternative lines of enquiry or procedures. They apply the mathematics they know in a wide range of familiar and unfamiliar contexts. They use mathematical language and symbols effectively in presenting a convincing,

Curriculum Area: Maths			
Subject:			
Year Group	Basic (Lower Ability End Points)	Clear (Middle Ability End Points)	Detailed (Higher Ability End Points)
	their own.	appreciate the difference between mathematical explanation and experimental evidence.	reasoned argument. Their reports include mathematical justifications, distinguishing between evidence and proof and explaining their solutions to problems involving a number of features or variables
11	In order to explore mathematical situations, carry out tasks or tackle problems, pupils identify the mathematical aspects and obtain necessary information. They calculate accurately, using ICT where appropriate. They check their working and results, considering whether these are sensible. They show understanding of situations by describing them mathematically using symbols, words and diagrams. They draw simple conclusions of their own and explain their reasoning.	Pupils develop and follow alternative approaches. They compare and evaluate representations of a situation, introducing and using a range of mathematical techniques. They reflect on their own lines of enquiry when exploring mathematical tasks. They communicate mathematical or statistical meaning to different audiences through precise and consistent use of symbols that is sustained throughout the work. They examine generalisations or solutions reached in an activity and make further progress in the activity as a result. They comment constructively on the reasoning and logic, the process employed and the results obtained.	Pupils perform procedures accurately. They interpret, communicate complex information accurately and make deductions and inferences and draw conclusions. Pupils can construct substantial chains of reasoning, including convincing arguments and formal proofs. They generate efficient strategies to solve complex mathematical and nonmathematical problems by translating them into a series of mathematical processes. Pupils make and use connections, which may not be immediately obvious, between different parts of mathematics and interpret results in the context of the given problem. They critically evaluate methods, arguments, results and the assumptions made.

[^0]$\left.\begin{array}{|l|l|}\hline \text { Why this? } & \begin{array}{l}\text { Mathematics is an interconnected subject in which pupils need to be able to move fluently between } \\ \text { Why now? } \\ \text { representations of mathematical ideas. The programme of study for key stage } 3 \text { is organised into } \\ \text { apparently distinct domains, but pupils should build on key stage } 2 \text { and connections across } \\ \text { mathematical ideas to develop fluency, mathematical reasoning and competence in solving } \\ \text { increasingly sophisticated problems. They should also apply their mathematical knowledge in } \\ \text { science, geography, computing and other subjects. The structure is designed to bridge between } \\ \text { KS2 and KS4, building both within and between key topic areas. The structure also builds the } \\ \text { complexity levels within topics and gives a greater variation in the challenge given to pupils. }\end{array} \\ \hline \begin{array}{l}\text { Skills \& } \\ \text { Characteristi } \\ \text { cs }\end{array} & \begin{array}{l}\text { Resilience } \\ \text { Pupils will increase their resilience during the course through learning new concepts, using prior } \\ \text { knowledge to develop mathematical fluency and applying skills to a variety of situations and } \\ \text { problems. Pupils will be challenged in all lessons and will show that they have learned from } \\ \text { mistakes through a variety of tasks including connect exercises. The challenge activities will have } \\ \text { the aim of developing both skills and high aspirations in both this subject and life beyond. } \\ \text { Resilience will also be developed within the Key maths skills below (fluency, reasoning and } \\ \text { problem solving). }\end{array} \\ \begin{array}{l}\text { Collaboration } \\ \text { Pupils will be given the opportunity to work together to develop and share their ideas on topics, } \\ \text { discuss misconceptions and how these topics can be used in real-life situations. }\end{array} \\ \text { Creativity } \\ \text { Pupils will develop creativity through a variety of problem solving activities within each topic, } \\ \text { working on independent tasks beyond the classroom such as Mangahigh activities, and apply the } \\ \text { key skills (fluency, reasoning and problem solving). } \\ \text { Skills Builder } \\ \text { cOMMUNICATION = Listening \& Speaking } \\ \text { Pupils are expected to actively listen so that they can follow instructions and pick out } \\ \text { misconceptions. (LISTENING) }\end{array}\right]$

CREATIVE PROBLEM SOLVING = Problem Solving \& Creativity
Problem solving is an important part of Mathematics and ensures that they develop their mathematical thinking and helps build resilience. (PROBLEM SOLVING)
SELF-MANAGEMENT: Staying Positive \& Aiming High
All pupils attempt Bronze/Silver/Gold tasks and choose their starting point and aim for one or two steps of progress within each lesson. (AIMING HIGH)
COLLABORATION: Leadership \& Teamwork
Pupils are expected to collaborate on many tasks, supporting each other to help all to progress. (TEAMWORK)

Develop fluency

Wconsolidate their numerical and mathematical capability from key stage 2 and extend their understanding of the number system and place value to include decimals, fractions, powers and roots
§select and use appropriate calculation strategies to solve increasingly complex problems
§use algebra to generalise the structure of arithmetic, including to formulate mathematical relationships
§substitute values in expressions, rearrange and simplify expressions, and solve equations
Jmove freely between different numerical, algebraic, graphical and diagrammatic representations [for example, equivalent fractions, fractions and decimals, and equations and graphs]
Wdevelop algebraic and graphical fluency, including understanding linear and simple quadratic functions
Wuse language and properties precisely to analyse numbers, algebraic expressions, 2-Dand 3-D shapes, probability and statistics.

Reason mathematically

Mextend their understanding of the number system; make connections between number relationships, and their algebraic and graphical representations
§extend and formalise their knowledge of ratio and proportion in working with measures and geometry, and in formulating proportional relations algebraically
Fidentify variables and express relations between variables algebraically and graphically
Fmake and test conjectures about patterns and relationships; look for proofs or counter- examples

	Sbegin to reason deductively in geometry, number and algebra, including using geometrical constructions Finterpret when the structure of a numerical problem requires additive, multiplicative or proportional reasoning Fexplore what can and cannot be inferred in statistical and probabilistic settings, and begin to express their arguments formally. Solve problems \&develop their mathematical knowledge, in part through solving problems and evaluating the outcomes, including multi-step problems Fdevelop their use of formal mathematical knowledge to interpret and solve problems, including in financial mathematics Wbegin to model situations mathematically and express the results using a range of formal mathematical representations \&select appropriate concepts, methods and techniques to apply to unfamiliar and non- routine problems.
Aspirations \& Careers	All pupils should be numerate and able to use mathematics at both work and in everyday life beyond school. Mathematics is fundamental to future success and closely linked with financial success. It enhances their ability to infer, problem solve, think logically, spot patterns as well as navigate through their chosen career with a well-equipped vocabulary. Furthermore, mathematics empowers our pupils to operate in the modern world. CDI: 1, 11
	CEIAG AMSP days Careers Fairs Career themed lessons Finance lessons (CDI: 13) Cultural Capital Maths challenges Mangahigh challenges Mathematics in the real world Organising trips, days out and other events

	Extracurricular Stretch and challenge club Chess \& games club Homework club

[^0]: LITERACY
 Pupils will develop their spelling of key mathematical words. This will be monitored using spelling tests at the start and end of each unit. This will be SPAG marked. Pupils will be given opportunities to write in sentences and paragraphs when suited to the topic.

