

		Ye	ar 12 Curriculum intent	- 2022-23	1	
	Autum	n Term	Spring Term		Sumn	ner Term
	1	2	1	2	1	2
Key Concepts	Physical Chemistry	Physical Chemistry	Physical Chemistry	Inorganic Chemistry	Revision Paper 1/2	Revision Paper 1/2
	(Paper 1 & 2) Atomic	(Paper 1 & 2)	(Paper 1 & 2)	(Paper 1)		
	Structure - The	Bonding - The physical	Kinetics - The study of	Group 2 - The		
	chemical properties of	and chemical	kinetics enables	elements in Group 2		
	elements depend on	properties of	chemists to determine	are called the alkaline		
	their atomic structure	compounds depend on	how a change in	earth metals. The		
	and in particular on the	the ways in which the	conditions affects the	trends in the		
	arrangement of	compounds are held	speed of a chemical	solubilities of the		
	electrons around the	together by chemical	reaction. Whilst the	hydroxides and the		
	nucleus. The	bonds and by	reactivity of chemicals	sulfates of these		
	arrangement of	intermolecular forces.	is a significant factor in	elements are linked to		
	electrons in orbitals is	Theories of bonding	how fast chemical	their use. Barium		
	linked to the way in	explain how atoms or	reactions proceed,	sulfate, magnesium		
	which elements are	ions are held together	there are variables that	hydroxide and		
	organised in the	in these structures.	can be manipulated in	magnesium sulfate		
	Periodic Table.	Materials scientists use	order to speed them up	have applications in		
	Chemists can measure	knowledge of structure	or slow them down.	medicines whilst		
	the mass of atoms and	and bonding to	Equilibria - In contrast	calcium hydroxide is		
	molecules to a high	engineer new materials	with kinetics, which is a	used in agriculture to		
	degree of accuracy in a	with desirable	study of how quickly	change soil pH, which		
	mass spectrometer.	properties. These new	reactions occur, a study	is essential for good		
	The principles of	materials may offer	of equilibria indicates	crop production and		
	operation of a modern	new applications in a	how far reactions will	maintaining the food		
	mass spectrometer are	range of different	go. Le Chatelier's	supply.		
	studied.	modern technologies.	principle can be used to	Group 7 - The		
	Amount of Substance -	Energetics - The	predict the effects of	halogens in Group 7		
	When chemists	enthalpy change in a	changes in	are very reactive non-		
	measure out an	chemical reaction can	temperature, pressure	metals. Trends in their		
	amount of a substance,	be measured	and concentration on	physical properties are		
	they use an amount in	accurately. It is	the yield of a reversible	examined and		
	moles. The mole is a	important to know this	reaction. This has	explained. Fluorine is		
	useful quantity	value for chemical	important	too dangerous to be		
	because one mole of a	reactions that are used	consequences for many	used in a school		

substance always	as a source of heat	industrial processes.	laboratory but the	
contains the same	energy in applications	The further study of the	reactions of chlorine	
number of entities of	such as domestic	equilibrium constant,	are studied.	
the substance. An	boilers and internal	Kc, considers how the	Challenges in studying	
amount in moles can	combustion engines.	mathematical	the properties of	
be measured out by		expression for the	elements in this group	
mass in grams, by	Inorganic Chemistry	equilibrium constant	include explaining the	
volume in dm3 of a	(Paper 1)	enables us to calculate	trends in ability of the	
solution of known	Periodicity – The	how an equilibrium	halogens to behave as	
concentration and by	Periodic Table provides	yield will be influenced	oxidising agents and	
volume in dm3 of a	chemists with a	by the concentration of	the halide ions to	
gas.	structured organisation	reactants and products.	behave as reducing	
	of the known chemical	Redox - Redox	agents.	
Organic Chemistry	elements from which	reactions involve a		
(Paper 2)	they can make sense of	transfer of electrons	Organic Chemistry	
Introduction to	their physical and	from the reducing	(Paper 2)	
Organic - Organic	chemical properties.	agent to the oxidising	Organic Analysis - Our	
chemistry is the study	The historical	agent. The change in	understanding of	
of the millions of	development of the	the oxidation state of	organic molecules,	
covalent compounds of	Periodic Table and	an element in a	their structure and the	
the element carbon.	models of atomic	compound or ion is	way they react, has	
These structurally	structure provide good	used to identify the	been enhanced by	
diverse compounds	examples of how	element that has been	organic analysis. This	
vary from naturally	scientific ideas and	oxidised or reduced in a	section considers	
occurring petroleum	explanations develop	given reaction.	some of the analytical	
fuels to DNA and the	over time.	Separate half-equations	techniques used by	
molecules in living		are written for the	chemists, including	
systems. Organic	Organic Chemistry	oxidation or reduction	test-tube reactions	
compounds also	(Paper 2)	processes. These half-	and spectroscopic	
demonstrate human	Halogenoalkanes -	equations can then be	techniques.	
ingenuity in the vast	Halogenoalkanes are	combined to give an		
range of synthetic	much more reactive	overall equation for any		
materials created by	than alkanes. They	redox reaction.		
chemists. Many of	have many uses,			
these compounds are	including as	Organic Chemistry		
used as drugs,	refrigerants, as	(Paper 2)		
	solvents and in			

	medicines and plastics.	pharmaceuticals. The	Alkenes - In alkenes,			
	Organic compounds	use of some	the high electron			
	are named using the	halogenoalkanes has	density of the carbon-			
	International Union of	been restricted due to	carbon double bond			
	Pure and Applied	the effect of	leads to attack on these			
	Chemistry (IUPAC)	chlorofluorocarbons	molecules by			
	system and the	(CFCs) on the	electrophiles. This			
	structure or formula of	atmosphere.	section also covers the			
	molecules can be		mechanism of addition			
	represented in various		to the double bond and			
	different ways. Organic		introduces addition			
	mechanisms are		polymers, which are			
	studied, which enable		commercially important			
	reactions to be		and have many uses in			
	explained. In the		modern society.			
	search for sustainable		Alcohols - Alcohols			
	chemistry, for safer		have many scientific,			
	agrochemicals and for		medicinal and industrial			
	new materials to		uses. Ethanol is one			
	match the desire for		such alcohol and it is			
	new technology,		produced using			
	chemistry plays the		different methods,			
	dominant role.		which are considered in			
	Alkanes - Alkanes are		this section. Ethanol			
	the main constituent of		can be used as a			
	crude oil, which is an		biofuel.			
	important raw material					
	for the chemical					
	industry. Alkanes are					
	also used as fuels and					
	the environmental					
	consequences of this					
	use are considered in					
	this section.					
Knowledge &	The AQA A Level (7405) i	•	The AQA A Level (7405) ir	•	The AQA A Level (7405) i	•
Understanding	designed to encourage s	tudents to:	designed to encourage st	udents to:	designed to encourage st	tudents to:

• develop their interest in and enthusiasm for the subject, including developing an interest in further study and careers associated with the subject

 develop essential knowledge and understanding of different areas of the subject and how they relate to each other
 develop and demonstrate a deep appreciation of the skills, knowledge and understanding of scientific methods

• develop competence and confidence in a variety of practical,

mathematical and problem solving skills

• understand how society makes decisions about scientific issues and how the sciences contribute to the success of the economy and society

• use theories, models and ideas to develop scientific explanations

• use knowledge and understanding to pose scientific questions, define scientific problems, present scientific arguments and scientific ideas

• use appropriate methodology, including

information and communication technology (ICT), to answer scientific questions and solve scientific problems4

• carry out experimental and investigative activities, including appropriate risk management, in a range of contexts

• analyse and interpret data to provide evidence, recognising correlations and causal relationships

• evaluate methodology, evidence and data, and resolve conflicting evidence

• know that scientific knowledge and understanding develops over time

communicate information and ideas in

appropriate ways using appropriate terminology

• develop their interest in and enthusiasm for the subject, including developing an interest in further study and careers associated with the subject

• develop essential knowledge and

understanding of different areas of the subject and how they relate to each other • develop and demonstrate a deep appreciation of the skills, knowledge and understanding of scientific methods

• develop competence and confidence in a variety of practical,

mathematical and problem solving skills

• understand how society makes decisions about scientific issues and how the sciences contribute to the success of the economy and society

• use theories, models and ideas to develop scientific explanations

• use knowledge and understanding to pose scientific questions, define scientific problems, present scientific arguments and scientific ideas

• use appropriate methodology, including information and communication technology (ICT), to answer scientific questions and solve scientific problems4

• carry out experimental and investigative activities, including appropriate risk management, in a range of contexts

• analyse and interpret data to provide evidence, recognising correlations and causal relationships

• evaluate methodology, evidence and data, and resolve conflicting evidence

• know that scientific knowledge and understanding develops over time

• communicate information and ideas in

appropriate ways using appropriate terminology

• develop their interest in and enthusiasm for the subject, including developing an interest in further study and careers associated with the subject

• develop essential knowledge and understanding of different areas of the subject and how they relate to each other • develop and demonstrate a deep appreciation of the skills, knowledge and understanding of scientific methods

• develop competence and confidence in a variety of practical,

mathematical and problem solving skills

understand how society makes decisions about scientific issues and how the sciences contribute to the success of the economy and society
use theories, models and ideas to develop scientific explanations

• use knowledge and understanding to pose scientific questions, define scientific problems, present scientific arguments and scientific ideas

• use appropriate methodology, including information and communication technology (ICT), to answer scientific questions and solve scientific problems4

• carry out experimental and investigative activities, including appropriate risk management, in a range of contexts

analyse and interpret data to provide evidence, recognising correlations and causal relationships
evaluate methodology, evidence and data, and resolve conflicting evidence

• know that scientific knowledge and understanding develops over time

• communicate information and ideas in appropriate ways using appropriate terminology

	 consider applications and implications of science and evaluate their associated benefits and risks consider ethical issues in the treatment of humans, other organisms and the environment evaluate the role of the scientific community in validating new knowledge and ensuring integrity evaluate the ways in which society uses science to inform decision making. 		 consider applications and implications of science and evaluate their associated benefits and risks consider ethical issues in the treatment of humans, other organisms and the environment evaluate the role of the scientific community in validating new knowledge and ensuring integrity evaluate the ways in which society uses science to inform decision making. 		 consider applications and implications of science and evaluate their associated benefits and risks consider ethical issues in the treatment of humans, other organisms and the environment evaluate the role of the scientific community in validating new knowledge and ensuring integrity evaluate the ways in which society uses science to inform decision making. Revision for P1 and P2 	
Assessment	End of Unit Assessment	nd of Unit Assessment End of Unit Assessment End of Unit Assessment Assessments & mock Assessment & mocks		A Level Preparation. End of Unit Assessment & AS Exams	End of Unit Assessment & AS Exams	
Why this? Why now?	The following topics are for the year as they are the Level Chemistry allowing platform to build on prior Atomic Structure: GCSE Chemistry - The structure of atoms revisited here). GCSE Physics - The structure of atoms revisited here). GCSE Physics - The effect of a force on - The effect of a magneti electrically charged parti Amount of Substance: GCSE Chemistry - Relative atomic mass, relative formula mass (althor writing formulae (element and ionic compounds). - Balancing equations (althor	he fundamentals of A pupils to have a solid r knowledge from GCSE: (although this is (although this is moving objects. c field on a moving, cle (Separate Science) tive molecular mass, ough this is revisited here). ts, common compounds	The second term content the initial AS content and content taught prior: Kinetics: GCSE Chemistry - Reaction rates. Equilibria: GCSE Chemistry - Reaction rates. - Exothermic and endotherr - Equilibria (Separate Science AS Chemistry - Energetics (useful to do this GCSE knowledge would suff - Kinetics (useful to do this f GCSE knowledge would suff - Kinetics (useful to do this f GCSE knowledge would suff Redox: AS Chemistry - Writing equations (3.1.2). Alkenes: AS Chemistry	l again brings in GCSE mic reactions. te but re-visited here). is first, but not essential as fice). first, but not essential as	All content is complete and exam technique for AS Exams.	at this stage. Revision for

	 Moles (although this is rev. Calculations involving Mass revisited here). Concentration of solutions although this is revisited here. Empirical and molecular for revisited here). Introduction to Organic: GCSE Chemistry Some simple organic cherr alkenes (although this is rev. Empirical and molecular for revisited here). Alkanes: GCSE Chemistry Some simple organic cherr alkenes (although this is rev. Empirical and molecular for revisited here). Alkanes: GCSE Chemistry Some simple organic cherr alkenes (although this is rev. Fractional distillation of cru revisited here). Empirical and molecular for revisited here). Empirical and molecular for revisited here). Structure and bonding (re- Periodicity: AS Chemistry Electron structure (3.1.1). Ionisation energy (3.1.1). Bonding (3.1.3). Halogenoalkanes: AS Chemistry Nomenclature of organic or 	ses (although this is (Separate Science - re). rmulae (although this is istry, eg alkanes and isited here). rmulas (although this is istry, eg alkanes and isited here). ude oil (although this is rmulae (although this is visited here).	 <i>E–Z</i> isomerism (3.3.1). Principles of curly arrow m Shapes of molecules (3.1.3 Alcohols: GCSE Chemistry What are biofuels? Production of ethanol. Addition polymers. AS Chemistry Alkenes (3.3.4). Group 2: GCSE Chemistry Writing formulas of ionic of AS Chemistry Ionisation energy (3.1.1.3) Bonding (3.1.3). Group 7: AS Chemistry Ionisation energy (3.1.1). Ionic equations (3.1.2). Electronegativity (3.1.3). Bonding (3.1.3). Oxidation states and redox Organic Analysis: AS Chemistry Mass spectrometry (3.1.1) Halogenoalkanes (3.3.3). Alkenes (3.3.4). Alcohols (3.3.5). 	s). compounds.). x equations (3.1.7).		
Skills &	 Principles of curly arrow m Practical 	echanisms (3.3.1). • Practical	Practical	Practical	Practical	Practical
Characteristics	 Skills. Critical Thinking. Use of apparatus 	 Skills. Critical Thinking. Use of apparatus 	 Skills. Critical Thinking. Use of apparatus 	 Skills. Critical Thinking. Use of apparatus 	 Skills. Critical Thinking. 	Skills.Critical Thinking.

	 and equipment. Independent thinking. Use and application of scientific methods and practice. Numeracy and application of mathematical concepts. Handling Data Algebra Geometry and Trigonometry. 	 and equipment. Independent thinking. Use and application of scientific methods and practice. Numeracy and application of mathematical concepts. Handling Data Algebra Geometry and Trigonometry. 	 and equipment. Independent thinking. Use and application of scientific methods and practice. Numeracy and application of mathematical concepts. Handling Data Algebra Geometry and Trigonometry. 	 and equipment. Independent thinking. Use and application of scientific methods and practice. Numeracy and application of mathematical concepts. Handling Data Algebra Geometry and Trigonometry. 	 Use of apparatus and equipment. Independent thinking. Use and application of scientific methods and practice. Numeracy and application of mathematical concepts. Handling Data Algebra Geometry and Trigonometry. 	 Use of apparatus and equipment. Independent thinking. Use and application of scientific methods and practice. Numeracy and application of mathematical concepts. Handling Data Algebra Geometry and Trigonometry.
Aspirations & Careers	 Graphs. Studying Chemistry pup opportunity to progress degrees/careers: Medicine Dentistry Veterinary Science Biomedical Science Natural Science Chemistry Medicinal Chemistry Biochemistry Pharmacy Chemical Engineering 		 Graphs. Studying Chemistry pup opportunity to progress degrees/careers: Medicine Dentistry Veterinary Science Biomedical Science Natural Science Chemistry Medicinal Chemistry Biochemistry Pharmacy Chemical Engineering 		 Graphs. Studying Chemistry pup opportunity to progress degrees/careers: Medicine Dentistry Veterinary Science Biomedical Science Natural Science Chemistry Medicinal Chemistry Biochemistry Pharmacy Chemical Engineering 	

	Plus many more.	Plus many more.	Plus many more.
	Chemistry also leads into many sectors that	Chemistry also leads into many sectors that	Chemistry also leads into many sectors that
	offer apprenticeships.	offer apprenticeships.	offer apprenticeships.
End points	By the end of year 12, students will acquire for	undational knowledge of Paper 1 and 2. In Year	12, these include the following specification
	points: Physical Chemistry - 3.1.1 to 3.1.7, Inor	ganic Chemistry – 3.2.1-3.2.3 and Organic Chem	istry – 3.3.1-3.3.6. Additionally, emphasis is
	placed on introducing and mastering the exter	nsive use of subject terminology unfamiliar to th	e GCSE specification. Students will develop the
	skills involved in the first 6 required practical's	in Year 12. This will include a full laboratory wr	ite up for in each line with the CPAC
	assessments for each practical. Year 12 stude	nts will develop the skill of applying their knowl	edge to exam questions.

		Yea	r 13 Curriculum inte	nt – 2022-23		
	Autum	n Term	Spring Term		Summer Term	
	1	2	1	2	1	2
Key Concepts	Physical Chemistry	Physical Chemistry	Inorganic	Physical Chemistry (Paper 1,	Revision Papers 1, 2	Revision Papers 1, 2
	(Paper 1, 2 & 3)	(Paper 1, 2 & 3)	Chemistry (Paper	2 & 3)	and 3	and 3
	Thermodynamics –	Kp – The further study	1 & 3)	Electrochemical Cells -		
	The further study of	of equilibria considers	Transition Metals	Redox reactions take place in		
	thermodynamics builds	how the mathematical	– The 3d block	electrochemical cells where		
	on the Energetics	expression for the	contains 10	electrons are transferred		
	section and is	equilibrium constant K	elements, all of	from the reducing agent to		
	important in	p enables us to	which are metals.	the oxidising agent indirectly		
	understanding the	calculate how an	Unlike the metals	via an external circuit. A		
	stability of compounds	equilibrium yield will	in Groups 1 and 2,	potential difference is		
	and why chemical	be influenced by the	the transition	created that can drive an		
	reactions occur.	partial pressures of	metals Ti to Cu	electric current to do work.		
	Enthalpy change is	reactants and	form coloured	Electrochemical cells have		
	linked with entropy	products. This has	compounds and	very important commercial		
	change enabling the	important	compounds where	applications as a portable		
	free-energy change to	consequences for	the transition	supply of electricity to power		
	be calculated.	many industrial	metal exists in	electronic devices such as		
	Rate Equations -	processes.	different oxidation	mobile phones, tablets and		
	In rate equations, the	Acids & Bases – Acids	states. Some of	laptops. On a larger scale,		
	mathematical	and bases are	these metals are	they can provide energy to		
	relationship between	important in domestic,	familiar as	power a vehicle		
	rate of reaction and	environmental and	catalysts. The			

concentration gives	industrial contexts.	properties of	Organic Chemistry (Paper 2
information about th	he Acidity in aqueous	these elements	& 3)
mechanism of a	solutions is caused by	are studied in this	Amino Acids, Proteins and
reaction that may	hydrogen ions and a	section with	DNA – Amino acids, proteins
occur in several step	os. logarithmic scale, pH,	opportunities for a	and DNA are the molecules
	has been devised to	wide range of	of life. In this section, the
Organic Chemistry	measure acidity. Buffer	practical	structure and bonding in
(Paper 2 & 3)	solutions, which can be	investigations.	these molecules and the way
Optical Isomerism –	- made from partially	Reaction of ions in	they interact is studied. Drug
Compounds that	neutralised weak acids,	aqueous solutions	action is also considered.
contain an asymmet	ric resist changes in pH	- The reactions of	Organic Synthesis - The
carbon atom form	and find many	transition metal	formation of new organic
stereoisomers that	important industrial	ions in aqueous	compounds by multi-step
differ in their effect	on and biological	solution provide a	syntheses using reactions
plane polarised light	applications.	practical	included in the specification
This type of isomeris	sm	opportunity for	is covered in this section.
is called optical	Inorganic Chemistry	students to show	Organic Analysis (NMR and
isomerism.	(Paper 1 & 3)	and to understand	Chromatography) - Chemists
Carbonyls -	Period 3 Oxides - The	how transition	use a variety of techniques
Aldehydes, ketones,	reactions of the Period	metal ions can be	to deduce the structure of
carboxylic acids and	3 elements with	identified by test-	compounds. In this section,
their derivatives all	oxygen are considered.	tube reactions in	nuclear magnetic resonance
contain the carbony	The pH of the solutions	the laboratory.	spectroscopy is added to
group which is	formed when the		mass spectrometry and
attacked by	oxides react with water	Organic Chemistry	infrared spectroscopy as an
nucleophiles. This	illustrates further	(Paper 2 & 3)	analytical technique. The
section includes the	trends in properties	Amines – Amines	emphasis is on the use of
addition reactions of	f across this period.	are compounds	analytical data to solve
aldehydes and ketor	nes. Explanations of these	based on	problems rather than on
Carboxylic acids are	reactions offer	ammonia where	spectroscopic theory.
weak acids but stror	ng opportunities to	hydrogen atoms	Chromatography provides an
enough to liberate	develop an in-depth	have been	important method of
carbon dioxide from	understanding of how	replaced by alkyl	separating and identifying
carbonates. Esters	and why these	or aryl groups.	components in a mixture.
occur naturally in	reactions occur	This section	Different types of
vegetable oils and		includes their	chromatography are used
animal fats. Importa	int		depending on the

	products obtained from esters include biodiesel, soap and glycerol.	Organic Chemistry (Paper 2 & 3) Aromatics - Aromatic chemistry takes benzene as an example of this type of molecule and looks at the structure of the benzene ring and its substitution reactions.	reactions as nucleophiles. Polymerisation – The study of polymers is extended to include condensation polymers. The ways in which condensation polymers are formed are studied, together with their properties and typical uses. Problems associated with the reuse or disposal of both addition and condensation polymers are considered.	composition of mixture to be separated.	
	TI				
Knowledge & Understanding	The AQA A Level (740. is designed to encoura • develop their interest the subject, including de further study and caree subject • develop essential know understanding of differe	t in and enthusiasm for eveloping an interest in rs associated with the wledge and	is designed to end • develop their inte subject, including d study and careers a • develop essential of different areas o	7405) in Chemistry content ourage students to: erest in and enthusiasm for the eveloping an interest in further ssociated with the subject knowledge and understanding f the subject and how they r • develop and demonstrate a	

and how they relate to each other • develop and	deep appreciation of the skills, knowledge and
demonstrate a deep appreciation of the skills,	understanding of scientific methods
knowledge and understanding of scientific	 develop competence and confidence in a variety
methods	of practical,
 develop competence and confidence in a 	mathematical and problem solving skills
variety of practical,	 understand how society makes decisions about
mathematical and problem solving skills	scientific issues and how the sciences contribute
• understand how society makes decisions about	to the success of the economy and society
scientific issues and how the sciences contribute	 use theories, models and ideas to develop
to the success of the economy and society	scientific explanations
 use theories, models and ideas to develop 	 use knowledge and understanding to pose
scientific explanations	scientific questions, define scientific problems,
 use knowledge and understanding to pose 	present scientific arguments and scientific ideas
scientific questions, define scientific problems,	 use appropriate methodology, including
present scientific arguments and scientific ideas	information and communication technology (ICT),
 use appropriate methodology, including 	to answer scientific questions and solve scientific
information and communication technology	problems11
(ICT), to answer scientific questions and solve	 carry out experimental and investigative
scientific problems11	activities, including appropriate risk management,
 carry out experimental and investigative 	in a range of contexts
activities, including appropriate risk	 analyse and interpret data to provide evidence,
management, in a range of contexts	recognising correlations and causal relationships
 analyse and interpret data to provide 	 evaluate methodology, evidence and data, and
evidence, recognising correlations and causal	resolve conflicting evidence
relationships	 know that scientific knowledge and
• evaluate methodology, evidence and data, and	understanding develops over time
resolve conflicting evidence	 communicate information and ideas in
 know that scientific knowledge and 	appropriate ways using appropriate terminology
understanding develops over time	• consider applications and implications of science
 communicate information and ideas in 	and evaluate their associated benefits and risks
appropriate ways using appropriate terminology	 consider ethical issues in the treatment of
 consider applications and implications of 	humans, other organisms and the environment
science and evaluate their associated benefits	 evaluate the role of the scientific community in
and risks	validating new knowledge and ensuring integrity
 consider ethical issues in the treatment of 	 evaluate the ways in which society uses science
humans, other organisms and the environment	to inform decision making.

		of the scientific community in					
	validating new know	ledge and ensuring integrity					
	 evaluate the ways 	evaluate the ways in which society uses science					
	to inform decision m	aking.					
Assessment	End of Unit	End of Unit	End of Unit	End of Unit Assessment &	A Level Exam Series	A Level Exam Series	
	Assessment	Assessments & mock	Assessment	mocks exams			
		exams					
Why this?	The AS course 7404	gives students a solid	The AS course 7404	gives students a solid			
Why now?		edge to progress into A Level		ledge to progress into A Level			
	studies. Each topic in			in Y13 utilises prior knowledge			
		inked topics and progresses	•	cs and progresses the pupils			
	the pupils understan		understanding furth				
	Thermodynamics –		Transition Metals –				
	AS Chemistry		AS Chemistry				
	- 3.1.4 – Energetics.		- 3.1.1 – Atomic structure (electron structure).				
	Rate Equations –		- 3.1.7 – Oxidation, reduction and redox reactions				
	AS Chemistry		(oxidation states, oxidation, reduction, redox				
	- 3.1.5 – Kinetics.		equations).				
	Optical Isomerism –		Reaction of ions in	aqueous solutions –			
	AS Chemistry		AS Chemistry				
	- 3.3.1.3 – Isomerism.			duction and redox reactions			
	A-level Chemistry		-	lation, reduction, redox			
	-	d ketones (the best example of	equations).				
		forms comes from the reaction	A-level Chemistry				
		ketones with HCN; two	- 3.2.5 – Transition metals.				
	alternative strategies are (a) teach 3.3.7 first but teach		Amines –				
	3.3.8, or (b) teach 3.3.8	tion of racemic mixtures during	AS Chemistry - 3.3.1.1 – Nomenclature.				
	Carbonyls –	s before 3.3.7).	- 3.3.1.1 – Nomenclature. - 3.3.1.2 – Reaction mechanisms.				
	AS Chemistry		- 3.3.1.2 – Reaction mechanisms. - 3.3.3.1 – Nucleophilic substitution.				
	- 3.3.1.1 – Nomenclatu	re	Polymerisation –				
	- 3.3.1.2 – Reaction me		AS Chemistry				
	- 3.3.5.2 – Oxidation of alcohols		- 3.3.1.1 – Nomenclature.				
	- 3.3.1.1 – Nomenclatu		- 3.3.4.3 – Addition po				
	- 3.3.1.2 – Reaction me	chanisms.	Electrochemical Ce	•			
	- 3.3.5.2 – Oxidation of	alcohols.	AS Chemistry				
	Кр —		,	reduction and redox			
	AS Chemistry		equations.				

	 - 3.1.6 - Chemical equilibria, Le Châtelier's principle and K_c Acids & bases - AS Chemistry - 3.1.6 - Chemical equilibria, Le Châtelier's principle and K_c Period 3 Oxides - AS Chemistry - 3.1.3 - Bonding. - 3.2.1 - Periodicity. Aromatics - AS Chemistry - 3.3.1.1 - Nomenclature. - 3.3.1.2 - Reaction mechanisms. 		Amino Acids, Proteins and DNA – AS Chemistry - 3.1.3.7 – Forces between molecules. - 3.3.1.1 – Nomenclature. A-level Chemistry - 3.3.9 – Carboxylic acids. - 3.3.11 – Amines. - 3.3.16 – Chromatography (you might wish to teach this section before using it to test amino acids by thin- layer chromatography here). Organic Synthesis – AS Chemistry - All organic chemistry topics. A-level Chemistry - 3.3.8–3.3.13 Organic Analysis (NMR & Chromatography) – AS Chemistry - 3.3.1.1 – Nomenclature. - 3.3.6 – Organic analysis. This section could be taught before the A-level organic chemistry topics allowing the technique to be re-visited and to be part of practice questions throughout the teaching of the A-level organic topics. - 3.3.13 Amino acids, proteins and DNA (this section			
			requires use of thin-layer chromatography for analysis of amino acids – it could be taught before or after this section)			
Skills & Characteristics	 Practical Skills. Critical Thinking. Use of apparatus and equipment. Independent thinking. 	 Practical Skills. Critical Thinking. Use of apparatus and equipment. Independent thinking. 	 Practical Skills. Critical Thinking. Use of apparatus and equipment. Independent thinking. Use and application of 	 Practical Skills. Critical Thinking. Use of apparatus and equipment. Independent thinking. 		

	 Use and application of scientific methods and practice. Numeracy and application of Use and application of scientific methods and practice. Numeracy and application of 	scientific methods and practice.Use and application of scientificNumeracy and application of mathematical concepts.Mumeracy and application of and application of and application of of and application of of oncepts.	
	 mathematical concepts. Handling Data Algebra Geometry and Trigonometry. Graphs. mathematical concepts. Handling Data Handling Data Handling Data Handling Data Geometry and Trigonometry. 	 Algebra mathematical concepts. Geometry and Trigonometry. Graphs. Algebra Algebra Geometry and Trigonometry. Graphs. 	
Aspirations & Careers	Studying Chemistry pupils have the opportunity to progress into the following degrees/careers:Medicine DentistryDentistryVeterinary Science 	Studying Chemistry pupils have the opportunity to progress into the following degrees/careers: Medicine Dentistry Veterinary Science Biomedical Science Natural Science Chemistry Medicinal Chemistry Biochemistry Pharmacy Chemical Engineering Plus many more. Chemistry also leads into many sectors that offer apprenticeships.	

End points	By the end of year 13, pupils will have acquired a high level of understanding of all aspects of the specification in preparation for the A Level
	examinations. Pupils will have mastered the extensive use of subject terminology within A Level Chemistry. Pupils will have continued to
	develop and consistently achieve the skills involved in all 12 required practicals in line with the CPAC criteria. This will result in a pass mark
	for the practical aspect of the course. The ultimate goal is for students to achieve their full potential in the Summer exam series of that
	year.